
1

Tree-based Cluster Weighted Modeling: Towards A Massively Parallel Real-
Time Digital Stradivarius

Edward S. Boyden III
e@media.mit.edu

Physics and Media Group
MIT Media Lab

20 Ames St.
Cambridge, MA 02139 USA

Abstract
Cluster-weighted modeling (CWM) is a versatile inference algorithm for deriving a functional
relationship between input data and output data by using a mixture of expert clusters. Each
cluster is localized to a Gaussian input region and possesses its own trainable local model. The
CWM algorithm uses expectation-maximization (EM) to find the optimal locations of clusters in
the input space and to solve for the parameters of the local model. However, the CWM algorithm
requires interactions between all the data and all the clusters. For a violin, whose training might
easily require over a billion data points and a hundred thousand clusters, such an implementation
is clearly undesirable. We use a variant of CWM that makes “pseudosoft” splits in the data to
model the time-series relationship between time-lagged values of human input data and digital
audio output data. We describe how this tree implementation would lend itself to a
multiprocessor parallelization of the CWM algorithm and examine the expected reduction in
time and space requirements. We also consider how this method could be used to perform
intelligent training of the violin.

1. Introduction
Among all great mechanical creations, classical instruments alone have been unsurpassable by

modern technology; the great violins of Stradivarius and Guarneri have not seen their popularity

fade with the years. At the MIT Media Lab, hyperinstruments, augmented instruments, and

instruments with unusual interfaces have been developed with abandon, but for the past two

years the Physics and Media group, and in particular Neil Gershenfeld, Bernd Schoner, and Eric

Metois, have tried to recreate a ‘digital violin’ with traditional inputs and realistic sound. The

theoretical basis for this agenda of reconstruction is solid, and we start with a fact from the

theory of nonlinear dynamics.

In 1981 Floris Takens proved that for a smoothly flowing classical dynamical system, one can

embed its d-dimensional phase space manifold into a 2d+1-dimensional real space consisting of

time-lagged values of a system observable y [1]. Since y is a function of the state, this implies

that it is possible to predict the value of the observable y from 2d+1 time-lagged values of itself.

2

For systems with inputs, it suffices to take 2d+1 lags of each input as well [2]. Therefore it is, in

theory, possible to find a mapping between the time-lagged inputs and outputs of a system and

future values of the output of the system. The solving of such inference problems has been a very

active area of research for the past two decades.

Among Bayesian learning techniques, which try and maximize the probability of a model given

observed data, one method has been suggested as particularly suitable for the violin problem. If

we consider the problem of a one-string violin, we might naively attempt to map the

instantaneous values of the finger position and the bow velocity to a sample of an output audio

waveform. Takens’ theorem suggests that we should actually take 2d+1 values of the finger

position, bow velocity, and waveform amplitude. This representation is fraught with difficulty,

including the fact that gigaflops of computing power would be required, but two facts limit the

actual dimension that we have to emulate: 1) there is limited information contained in the digital

waveform that represents the output sound (16 bit, 22kHz at the current moment), and 2) we only

have to recreate the signal up to the perceptual limits of the human ear. Much personal

experimentation over the past month has demonstrated that a mere three lags in bow velocity,

two lags in finger position, and no lags in the output audio suffices to recreate the in-sample

sound of the violin.

Two years of experimentation have also suggested an optimal way to represent a chunk of sound

[3]. Our preprocessing program chops up the training data into 256/22050 ~ 1/86-second frames,

and the program averages the finger position and velocity data over each of these intervals. As

for the audio, we extract the frequencies and amplitudes of the 25 most important harmonics, so

that the output space is 50-dimensional [3]. Thus these 1/86-second frames represent the input

and output data at a discrete “instant,” and they are the data that we use to train our network.

When we want to synthesize new sound from new input data, we simply take time-lagged sets of

bow velocity and finger position data, find the 50-dimensional output corresponding to these

inputs, and synthesize a 1/86-second frame of sound from these harmonics. The relevant signal

processing was developed by [4].

3

The method of machine learning used to solve the inference problem is cluster-weighted

modeling, which is described in the next section.

2. Cluster-weighted modeling

The cluster-weighted modeling (CWM) algorithm was developed by Gershenfeld, Schoner and

Metois [5]. We wish to reconstruct the probability density p(y, x) from y and x; we assume that

we can expand the distribution over M clusters as follows:

p y x p y x c p x c p cm m m
m

M

(,) (| ,) (|) ()=
=

∑
1

(1)

We assume that the clusters have the following Gaussian probabilities:

p x c
C

em d
m

x C xm m m(|)
() | |/ /

() ()/= − − −−1
2 2 1 2

21

π
µ µ (2)

p y x c
C

em d
ym

f b x y C f x b ym(| ,)
() | |/ /

((,)) ((,))/= − − −−1
2 2 1 2

21

π
(3)

where b is a set of parameters such that f(x,b) is linear in the parameters b. One can show that (2)

is equal to the assumption of softmax gating functions in the mixture of experts network, which

is described in [6]. We can now apply expectation-maximization to (1) by letting the cluster

means and variances be hidden variables. This gives the following equations for the cluster

means and variances, equivalent to the analogous EM derivation of Gaussian mixture parameters

in Bishop [7], although Gershenfeld derives it in a completely original way, using Monte Carlo

integration, in [5]:

µm
n m n n

m n n

x p c x y

p c x y
= ∑

∑
(| ,)

(| ,)

(4)

σ
µ2

2

m
n m m n n

m n n

x p c y x

p c y x
=

−∑
∑

() (| ,)

(| ,)

(5)

We derive the parameters for each cluster m using maximum likelihood:

0 = = = −∂ ∂
∂

∂b m b m
m

p y x p y x c y f x b
b

f x blog((,)) log((| ,) [(,)] (,)

(6)

which gives us, for a function f that is linear in the parameters b, i.e.,
f x b b f xm m i i(,) (),= ∑ (6)

the following solution

4

0 = − ≡ −∑ ∑yf x b f x f x a b Bj m i j i j m i ij() () (), ,
(7)

which yields the solution
b B am = − 1 (7)

which is just the pseudoinverse solution to the normal equations.

4. Tree-based algorithm
We devised the following tree-based algorithm to reduce the interactions between the various

points and clusters, after Schoner [8]. Let n be the number of clusters that each cluster is

subdivided into, d the fraction of duplicated points in the pseudosoft step, L the number of levels

of the tree, N the total number of data points, and M the total number of clusters on the lowest

level.

1) Run cluster-weighted modeling with n clusters on the current data set.

2) Assign each data point to the cluster for which the likelihood p(x|cm) is greatest.

3) Choose the d% next highest likelihoods and assign these points to their corresponding

clusters, so that the total number of points on any level L is N(1+d). This effects a pseudosoft

sharing of commonly held clusters. (One point may be assigned to more than two clusters.)

4) With these assignments in mind, reiterate, running CWM on each of the smaller data sets and

dividing the training data as appropriate.

5) On the last level, run ordinary CWM so that each small set of data is effectively clustered

with n clusters.

The reconstruction step is analogous:

1) Given a data point x, evaluate the likelihoods p(x|cm) for each cluster in the next lower level.

2) Choose the most likely cluster, and repeat step 1 until you reach the last level.

3) On the last level, do ordinary CWM (i.e., evaluate the weighted sum of functions f(x,b) and

return the answer.

Thus instead of one CWM operation with M clusters and N data points, one performs on the

order of M/2 CWM operations, each with n clusters and a fraction of the number of data points.

According to [2], this gives a speedup of
m
M

(1+d)logM/logm which can easily be over a thousand

for the value of M we gave in the introduction, and reasonable values for m (say, 5) and d (~.1).

5

5. Implications

On a sample scale fragment, we found rough speedups of 50%-400% for choices of M in the

range 25-125, with almost no decline in perceptual sound quality as compared to the ordinary

cluster-weighted modeling method. Note that these are values of M that are much smaller than

the actual expected values, so the eventual relative speedup will probably be much greater. Also,

the tree driver code was completely written in Matlab, while the CWM code itself was written in

C. The real speedup for an algorithm completely written in C could be significantly greater.

We also were able to use sufficient numbers of clusters such that synthesis of full A-major scales

was possible (before this algorithm was developed, only single notes were efficiently

synthesized). Complex signal analysis and synthesis is now accomplishable in a matter of

minutes, as opposed to a matter of hours. Clearly this will be important as continued work on a

realistic violin continues.

Furthermore, this tree-model allows the CWM code to be parallelized. The implications for

parallelization are obvious: once a pseudosoft split of a batch of input data has been effected, the

analysis trees are separate from there onward. Thus different processors can process the different

data subsets in parallel. In the reconstruction stage, the likelihoods of each data point with

respect to the different clusters on a level can be evaluated on separate processors. We have

acquired a 6-processor SGI and plan to experiment with MPI acceleration of the routines.

Also, there remains the possibility of more intelligent training of the violin. What if the initial

split was done with respect to finger position alone, and subsequent “fine-tuning” divisions were

accomplished with respect to all the data? This coarse split would effectively be an additional set

of priors based on finger position, and may improve the accuracy of the violin training. The

effectiveness of this method has yet to be explored, but it looks promising.

In conclusion, this algorithm is a useful extension to current cluster-weighted-modeling and

mixture-of-experts algorithms, when applied to datasets involving vast quantities of data and

many different regions of operation.

6

References and Notes
1. Takens, F., “Detecting Strange Attractors in Turbulence”, Lecture Notes in Mathematica,

366-381, Springer, 1981.
2. Schoner, B., State Reconstruction for Determining Predictability in Driven Nonlinear

Acoustical Systems, Diploma Thesis, MIT Media Lab, Massachusetts Institute of
Technology, May 1996.

3. Schoner, B. (private communication)
4. Bernd Schoner (Physics and Media, MIT Media Lab) wrote all of the signal processing

code for creating frames, Kalman-filtering the bow velocity and finger position data, and
synthesizing sound. We will start organizing these elements into coherent libraries soon.

5. N. Gershenfeld, B. Schoner, E. Metois, “Cluster-Weighted Modeling for Time Series
Prediction and Characterization”, preprint (1997).

6. Jordan, M. I., and Jacobs, R. A., “Hierarchical Mixtures of Experts and the EM
Algorithm”, Neural Computation, 6, 181-214, 1994.

7. Bishop C. M., Neural Networks for Pattern Recognition, Oxford University Press, Oxford,
1995.

8. An outline of this algorithm is given in Schoner’s thesis [4], for a different situation (at this
point in the history of the violin, the output representation was still a pure waveform, not a
reduced 50-dimensional representation, so the need for vast cluster-crunching algorithms
was even more necessary!).

Thanks to Neil Gershenfeld for the original inspiration behind the project, for developing the
CWM algorithm, and for writing the original implementation; to Bernd Schoner for lots of
signal-processing code and help in understanding it, and for many interesting discussions; to
Chris Douglas for helping assemble a coherent infrastructure for the violin software; and to
Charles Cooper for many interesting discussions of the relevant music physics. (Digital
Stradivarius Team 1997.)

Copyright 1997 Physics and Media, MIT Media Lab.
December 12, 1997.

